Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery.

نویسندگان

  • Zeeshan H Syedain
  • Lee A Meier
  • Mathew T Lahti
  • Sandra L Johnson
  • Robert T Tranquillo
چکیده

The performance of completely biological, decellularized engineered allografts in a sheep model was evaluated to establish clinical potential of these unique arterial allografts. The 4-mm-diameter, 2-3-cm-long grafts were fabricated from fibrin gel remodeled into an aligned tissue tube in vitro by ovine dermal fibroblasts. Decellularization and subsequent storage had little effect on graft properties, with burst pressure exceeding 4000 mmHg and the same compliance as the ovine femoral artery. Grafts were implanted interpositionally in the femoral artery of six sheep (n=9), with contralateral sham controls (n=3). At 8 weeks (n=5) and 24 weeks (n=4), all grafts were patent and showed no evidence of dilatation or mineralization. Mid-graft lumen diameter was unchanged. Extensive recellularization occurred, with most cells expressing αSMA. Endothelialization was complete by 24 weeks with elastin deposition evident. These completely biological grafts possessed circumferential alignment/mechanical anisotropy characteristic of native arteries and were cultured only 5 weeks prior to decellularization and storage as "off-the-shelf" grafts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autogenous Osteochondral Transplantation Mosaicplasty (An Animal Study on Sheep)

Background: Autogenous osteochondral grafting of articular defect in weight-bearing surface of large joints has proven to be a proper biomechanical and physiological solution for localized full-thickness defects.Objective: To study the gross and histopathological results of mosaicplasty in an animal model (sheep’s medial femoral condyle), evaluating the factors of defect and graft size, assessi...

متن کامل

Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study

Effective cellularization is a key approach to prevent small-caliber (<4 mm) tissue-engineered vascular graft (TEVG) failure and maintain patency and contractility following implantation. To achieve this goal, however, improved biomimicking designs and/or relatively long production times (typically several months) are required. We previously reported on porcine carotid artery decellularization ...

متن کامل

Pediatric tubular pulmonary heart valve from decellularized engineered tissue tubes.

Pediatric patients account for a small portion of the heart valve replacements performed, but a pediatric pulmonary valve replacement with growth potential remains an unmet clinical need. Herein we report the first tubular heart valve made from two decellularized, engineered tissue tubes attached with absorbable sutures, which can meet this need, in principle. Engineered tissue tubes were fabri...

متن کامل

Tissue engineering of recellularized small-diameter vascular grafts.

A tissue-engineered small-diameter arterial graft would be of benefit to patients requiring vascular reconstructive procedures. Our objective was to produce a tissue-engineered vascular graft with a high patency rate that could withstand arterial pressures. Rat arteries were acellularized with a series of detergent solutions, recellularized by incubation with a primary culture of endothelial ce...

متن کامل

Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance.

The tremendous need for bone tissue in numerous clinical situations and the limited availability of suitable bone grafts are driving the development of tissue engineering approaches to bone repair. In order to engineer viable bone grafts, one needs to understand the mechanisms of native bone development and fracture healing, as these processes should ideally guide the selection of optimal condi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 11-12  شماره 

صفحات  -

تاریخ انتشار 2014